PhD in Information Engineering , Department of Information Engineering (DINFO),
University of Florence
.

My research interests are optimization applications, machine learning and other topics related to them. In particular, my principal addressed problems are multi-objective optimization, clustering and bayesian optimization.

My PhD Thesis is available at the following link.

Publications

  1. Cardinality-Constrained Multi-objective Optimization: Novel Optimality Conditions and Algorithms.
    M. Lapucci, P. Mansueto.
    Journal of Optimization Theory and Applications (2024).
    DOI: 10.1007/s10957-024-02397-3.
  2. Improved front steepest descent for multi-objective optimization.
    M. Lapucci, P. Mansueto.
    Operations Research Letters (2023).
    DOI: 10.1016/j.orl.2023.03.001.
  3. A limited memory Quasi-Newton approach for multi-objective optimization.
    M. Lapucci, P. Mansueto.
    Computational Optimization and Applications (2023).
    DOI: 10.1007/s10589-023-00454-7.
  4. A memetic procedure for global multi-objective optimization.
    M. Lapucci, P. Mansueto, F. Schoen.
    Mathematical Programming Computation (2022).
    DOI: 10.1007/s12532-022-00231-3.
  5. Pareto Front Approximation through a Multi-objective Augmented Lagrangian Method.
    G. Cocchi, M. Lapucci, P. Mansueto.
    EURO Journal on Computational Optimization (2021).
    DOI: 10.1016/j.ejco.2021.100008.
  6. Memetic differential evolution methods for clustering problems.
    P. Mansueto, F. Schoen.
    Pattern Recognition (2021).
    DOI: 10.1016/j.patcog.2021.107849.
  7. Recognition of Concordances for Indexing in Digital Libraries.
    S. Marinai, S. Capobianco, Z. Ziran, A. Giuntini, P. Mansueto.
    Digital Libraries: The Era of Big Data and Data Science (2020).
    DOI: 10.1007/978-3-030-39905-4_14.

Pre-prints

  1. Combining Gradient Information and Primitive Directions for High-Performance Mixed-Integer Optimization.
    M. Lapucci, G. Liuzzi, S. Lucidi, P. Mansueto.
    ArXiv pre-print (2024).
    DOI: 10.48550/arXiv.2407.14416.
  2. Effective Front-Descent Algorithms with Convergence Guarantees.
    M. Lapucci, P. Mansueto, D. Pucci.
    ArXiv pre-print (2024).
    DOI: 10.48550/arXiv.2405.08450.
  3. Memetic Differential Evolution Methods for Semi-Supervised Clustering.
    P. Mansueto, F. Schoen.
    ArXiv pre-print (2024).
    DOI: 10.48550/arXiv.2403.04322.
  4. A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization.
    F. Carciaghi, S. Magistri, P. Mansueto, F. Schoen.
    ArXiv pre-print (2024).
    DOI: 10.48550/arXiv.2402.00726.

Talks

  • ODS 2024, Badesi — Pareto Front Reconstruction of Multi-Objective Optimization Problems
  • EURO 2024, Copenhagen — A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization
  • EUROPT 2024, Lund — Memetic Differential Evolution Methods for Semi-Supervised Clustering
  • RAMOO 2023, Roma — Improved Front Steepest Descent for Multi-objective
    Optimization
  • ODS 2023, Ischia — Improved Front Steepest Descent for Multi-Objective Optimization
  • EUROPT 2023, Budapest — Improved Front Steepest Descent for Multi-Objective Optimization
  • SIAM OP23, Seattle — Cardinality-constrained MOO Problems: Novel Optimality Conditions & Algorithms
  • ODS 2022, Florence — A Quasi-Newton Approach for Large Scale Multi-Objective Optimization
  • EUROPT 2022, Lisbon — A Quasi-Newton Approach for Large Scale Multi-Objective Optimization
  • ODS 2021, Rome — Improving the NSGA-II Algorithm with Descent Steps
  • EUROPT 2021, Toulouse (virtual) — Pareto Front Approximation through a Multi-objective Augmented Lagrangian Method

Software

Contacts

Via di Santa Marta, 3 – 50139 Firenze FI (Italy)

E-mails: pierluigi dot mansueto at unifi dot it, pierluigimansueto at gmail dot com

 

image_print