PhD in Information Engineering , Department of Information Engineering (DINFO),
University of Florence.
My research interests are optimization applications, machine learning and other topics related to them. In particular, my principal addressed problems are multi-objective optimization, clustering and bayesian optimization.
- Google Scholar profile.
- ORCID number: 0000-0002-1394-0937.
- My CV is available here.
My PhD Thesis is available at the following link.
Publications
- Cardinality-Constrained Multi-objective Optimization: Novel Optimality Conditions and Algorithms.
M. Lapucci, P. Mansueto.
Journal of Optimization Theory and Applications (2024).
DOI: 10.1007/s10957-024-02397-3. - Improved front steepest descent for multi-objective optimization.
M. Lapucci, P. Mansueto.
Operations Research Letters (2023).
DOI: 10.1016/j.orl.2023.03.001. - A limited memory Quasi-Newton approach for multi-objective optimization.
M. Lapucci, P. Mansueto.
Computational Optimization and Applications (2023).
DOI: 10.1007/s10589-023-00454-7. - A memetic procedure for global multi-objective optimization.
M. Lapucci, P. Mansueto, F. Schoen.
Mathematical Programming Computation (2022).
DOI: 10.1007/s12532-022-00231-3. - Pareto Front Approximation through a Multi-objective Augmented Lagrangian Method.
G. Cocchi, M. Lapucci, P. Mansueto.
EURO Journal on Computational Optimization (2021).
DOI: 10.1016/j.ejco.2021.100008. - Memetic differential evolution methods for clustering problems.
P. Mansueto, F. Schoen.
Pattern Recognition (2021).
DOI: 10.1016/j.patcog.2021.107849. - Recognition of Concordances for Indexing in Digital Libraries.
S. Marinai, S. Capobianco, Z. Ziran, A. Giuntini, P. Mansueto.
Digital Libraries: The Era of Big Data and Data Science (2020).
DOI: 10.1007/978-3-030-39905-4_14.
Pre-prints
- Combining Gradient Information and Primitive Directions for High-Performance Mixed-Integer Optimization.
M. Lapucci, G. Liuzzi, S. Lucidi, P. Mansueto.
ArXiv pre-print (2024).
DOI: 10.48550/arXiv.2407.14416. - Effective Front-Descent Algorithms with Convergence Guarantees.
M. Lapucci, P. Mansueto, D. Pucci.
ArXiv pre-print (2024).
DOI: 10.48550/arXiv.2405.08450. - Memetic Differential Evolution Methods for Semi-Supervised Clustering.
P. Mansueto, F. Schoen.
ArXiv pre-print (2024).
DOI: 10.48550/arXiv.2403.04322. - A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization.
F. Carciaghi, S. Magistri, P. Mansueto, F. Schoen.
ArXiv pre-print (2024).
DOI: 10.48550/arXiv.2402.00726.
Talks
- ODS 2024, Badesi — Pareto Front Reconstruction of Multi-Objective Optimization Problems
- EURO 2024, Copenhagen — A Bi-Objective Optimization Based Acquisition Strategy for Batch Bayesian Global Optimization
- EUROPT 2024, Lund — Memetic Differential Evolution Methods for Semi-Supervised Clustering
- RAMOO 2023, Roma — Improved Front Steepest Descent for Multi-objective
Optimization - ODS 2023, Ischia — Improved Front Steepest Descent for Multi-Objective Optimization
- EUROPT 2023, Budapest — Improved Front Steepest Descent for Multi-Objective Optimization
- SIAM OP23, Seattle — Cardinality-constrained MOO Problems: Novel Optimality Conditions & Algorithms
- ODS 2022, Florence — A Quasi-Newton Approach for Large Scale Multi-Objective Optimization
- EUROPT 2022, Lisbon — A Quasi-Newton Approach for Large Scale Multi-Objective Optimization
- ODS 2021, Rome — Improving the NSGA-II Algorithm with Descent Steps
- EUROPT 2021, Toulouse (virtual) — Pareto Front Approximation through a Multi-objective Augmented Lagrangian Method
Software
- s_mdeclust v1.0.0 — github.com/pierlumanzu/s_mdeclust.
- g_dfl v1.0.0 — github.com/pierlumanzu/g_dfl.
- fd_framework v1.0.0 — github.com/pierlumanzu/fd_framework.
- biobj_acquistion_function_for_BO v1.0.0 — github.com/FranciC19/biobj_acquistion_function_for_BO.
- cc-moo v1.0.0 — github.com/pierlumanzu/cc-moo.
- front-alamo v1.0.0 — github.com/pierlumanzu/front-alamo.
- ifsd v1.0.1 — github.com/pierlumanzu/ifsd.
- limited_memory_method_for_MOO v1.0.2 — github.com/pierlumanzu/limited_memory_method_for_MOO.
- nsma v1.0.7 — github.com/pierlumanzu/nsma.
Contacts
Via di Santa Marta, 3 – 50139 Firenze FI (Italy)
E-mails: pierluigi dot mansueto at unifi dot it, pierluigimansueto at gmail dot com